<u>Nan</u>	e: Course/Section: Instructor:
	oter 17 Radical Expressions and Functions Operations on Radical Expressions
Addi	ion and Subtraction ~ Multiplication ~ Rationalizing the Denominator
ST	UDY PLAN
]]	ead: Read Section 17.4 on pages 1099-1108 in your textbook or eText.
	ractice: Do your assigned exercises in your Book MyMathLab Worksheets eview: Keep your corrected assignments in an organized notebook and use them to review for the test.
(]]	that some terms or expressions may not be used. onjugate adicand ke radical adical expression ationalizing the denominator
1.	(s) have the same index and the same radicand.
2.	The process of removing any radical expressions from the denominator is called
3.	The of $\sqrt{a} - \sqrt{b}$ is $\sqrt{a} + \sqrt{b}$.

Addition and Subtraction

Exercises 1-24: Refer to Examples 1-9 on pages 1100-1104 in your text and the Section 17.4 lecture video.

If possible, add the expressions and simplify.

1.
$$5\sqrt{7} + 8\sqrt{7}$$

2.
$$4\sqrt[3]{5} + \sqrt[3]{5}$$

3.
$$3+2\sqrt{3}$$

4.
$$\sqrt{6} + \sqrt{10}$$

Write each pair of terms as like radicals, if possible.

5.
$$\sqrt{75}$$
, $\sqrt{48}$

6.
$$\sqrt{8}$$
, $\sqrt{4}$

7.
$$7\sqrt[3]{24}$$
, $2\sqrt[3]{81}$

Add the expressions and simplify.

8.
$$\sqrt{18} + 4\sqrt{2}$$

9.
$$\sqrt[3]{24} + \sqrt[3]{3}$$

10.
$$5\sqrt{2} + \sqrt{8} + \sqrt{18}$$

Add the expressions and simplify. Assume that all variables are positive.

11.
$$\sqrt[4]{32} + 3\sqrt[4]{2}$$

12.
$$-4\sqrt{9x} + \sqrt{x}$$

13.
$$2\sqrt{5b} + 8\sqrt{20b} + 3\sqrt{45b}$$

Simplify the expressions.

14.
$$6\sqrt{5} - 2\sqrt{5}$$

15.
$$4\sqrt[3]{7} - 3\sqrt[3]{7} + \sqrt[3]{10}$$

16.
$$6\sqrt{t} + \sqrt[3]{t} - 3\sqrt{t}$$

Subtract and simplify. Assume that all variables are positive.

17.
$$5\sqrt[3]{m^2n} - \sqrt[3]{m^2n}$$

18.
$$\sqrt{9y^3} - \sqrt{y^3}$$

19.
$$\sqrt[3]{\frac{7x}{8}} - \frac{\sqrt[3]{7x}}{4}$$

- **20.** The functions given by $N(x) = 650\sqrt{x} + 5000$ (new technology) and $O(x) = 225\sqrt{x} + 1700$ (old technology) approximate the increase in revenue resulting from investing x dollars in equipment (per worker).
 - (a) Find their difference D(x) = N(x) O(x). Simplify your answer.
- **20.**(a)_____

(b) Evaluate D(40,000) and interpret the result.

(b)_____

Subtract and simplify. Assume that all variables are positive.

21.
$$\frac{7\sqrt{2}}{4} - \frac{2\sqrt{2}}{3}$$

22.
$$\sqrt[4]{81x^6y^9} - \sqrt[4]{16x^2y}$$

23.
$$2\sqrt[3]{\frac{t^4}{8}} - 4\sqrt[3]{t}$$

- **24.** Find the exact perimeter of a rectangle with length $\sqrt{75}$ feet and width $\sqrt{12}$ feet. Then approximate your answer to the nearest hundredth of a foot.
- 24. _____

Multiplication

Exercises 25-26: Refer to Example 10 on pages 1104-1105 in your text and the Section 17.4 lecture video.

Multiply and simplify.

25.
$$(\sqrt{a}+6)(\sqrt{a}-2)$$

25. _____

26.
$$(2-\sqrt{5})(2+\sqrt{5})$$

26. _____

Rationalizing the Denominator

Exercises 27-35: Refer to Examples 11-15 on pages 1105-1108 in your text and the Section 17.4 lecture video.

Rationalize each denominator. Assume that all variables are positive.

27.
$$\frac{1}{\sqrt{3}}$$

27. _____

28.
$$\frac{2}{7\sqrt{2}}$$

28. _____

29.
$$\sqrt{\frac{y}{50}}$$

29. _____

$$30. \quad \frac{x^2y}{\sqrt{x^3}}$$

- 31. An equilateral triangle has sides of length $\frac{x}{\sqrt{3}}$. Find the perimeter and rationalize the denominator.
- 31.____

Rationalize the denominator.

32.
$$\frac{3}{\sqrt{5}+2}$$

33.
$$\frac{2-\sqrt{3}}{3+\sqrt{3}}$$

$$34. \quad \frac{\sqrt{x}}{\sqrt{x}-4}$$

35. Rationalize the denominator of
$$\frac{4}{\sqrt[3]{y}}$$
.