Draw a line that has the given slope and y-intercept.

1)
$$m = \frac{1}{2}$$
, $b = 3$

2)
$$m = -\frac{1}{3}$$
, $b = 4$

Complete the following:

- (a) Write the equation in slope-intercept form.
- (b) Give the slope and y-intercept of the line.

3)
$$9x + 7y = 55$$

4)
$$-4x + y = 15$$

Graph the equation.

5)
$$y = \frac{1}{3}x + 4$$

6)
$$y = -\frac{1}{6}x + 4$$

Use the labeled point to write the point-slope form for the line.

10)

 $Graph\ the\ equation.$

7)
$$y = -\frac{1}{5}x + 2$$

Write the point-slope form in slope-intercept form.

11)
$$y - 6 = -9(x + 5)$$

12)
$$y + 2 = \frac{3}{5}(x - 5)$$

Find the slope-intercept form for the line satisfying the conditions.

13) Slope - 6, passing through (4, 4)

Determine whether the given point lies on the line.

8)
$$(-3, 8)$$
; $y - 11 = x$

9) (0, 4);
$$y = \frac{1}{2}(x + 6) + 3$$

14) Passing through (-2, -6) and (8, 1)

Solve the problem.

18)

A gas station sells 4820 gallons of regular unleaded gasoline on a day when they charge \$4.35 per gallon, whereas they sell 3953 gallons on a day that they charge \$4.40 per gallon. Find a linear function that expresses gallons sold as a function of price.

15) x-intercept 7, y-intercept -8

16) Parallel to y = 2x - 9, passing through (1, -5)

17) Perpendicular to $y = \frac{1}{3}x + 19$, passing through the point (-5, -6)

1)

2)

- 3) (a) $y = -\frac{9}{7}x + \frac{55}{7}$
 - (b) $-\frac{9}{7}$; $\frac{55}{7}$
- 4) (a) y = 4x + 15 (b) 4; 15

5)

7)

- 8) Yes
- 9) No

10)
$$y - 3 = -\frac{7}{4}(x + 4)$$

- 11) y = -9x 39
- 12) $y = \frac{3}{5}x 5$
- 13) y = -6x + 28
- 14) $y = \frac{7}{10}x \frac{23}{5}$
- 15) $y = \frac{8}{7}x 8$
- 16) y = 2x 7
- 17) y = -3x 21
- 18) y = -17,340x + 80,249